Two-Stage Procedures for High-Dimensional Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for regression analysis in high-dimensional data

By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...

متن کامل

Two-stage DEA with Fuzzy Data

Data envelopment analysis is a nonparametric technique checking efficiency of DMUs using math programming. In conventional DEA, it has been assumed that the status of each measure is clearly known as either input or output. Kao and Hwang (2008) developed a data envelopment analysis (DEA) approach for measuring efficiency of decision processes which can be divided into two stages. The first stag...

متن کامل

A fast two-stage classification method for high-dimensional remote sensing data

Classification for high-dimensional remotely sensed data generally requires a large set of data samples and enormous processing time, particularly for hyperspectral image data. In this paper, we present a fast two-stage classification method composed of a band selection (BS) algorithm with feature extraction/selection (FSE) followed by a recursive maximum likelihood classifier (MLC). The first ...

متن کامل

Two-stage stepup procedures controlling FDR

A two-stage stepup procedure is defined and an explicit formula for the FDR of this procedure is derived under any distributional setting. Sets of critical values are determined that provide a control of the FDR of a two-stage stepup procedure under iid mixture model. A class of two-stage FDR procedures modifying the Benjamini–Hochberg (BH) procedure and containing the one given in Storey et al...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sequential Analysis

سال: 2011

ISSN: 0747-4946,1532-4176

DOI: 10.1080/07474946.2011.619088